Rxivist logo

White matter microstructural changes in short-term learning of a continuous visuomotor sequence

By Stéfanie A. Tremblay, Anna-Thekla Jäger, Julia Huck, Chiara Giacosa, Stephanie Beram, Uta Schneider, Sophia Grahl, Arno Villringer, Christine L. Tardif, Pierre-Louis Bazin, Christopher J Steele, Claudine J Gauthier

Posted 02 Oct 2020
bioRxiv DOI: 10.1101/2020.10.02.324004

Efficient neural transmission is crucial for optimal brain function, yet the plastic potential of white matter (WM) has long been overlooked. Growing evidence now shows that modifications to axons and myelin occur not only as a result of long-term learning, but also after short training periods. Motor sequence learning (MSL), a common paradigm used to study neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in each stage. However, most studies investigating short-term WM plasticity have used a pre-post design, in which the temporal dynamics of changes across learning stages cannot be assessed. In this study, we used multiple magnetic resonance imaging (MRI) scans at 7 Tesla to investigate changes in WM in a group learning a complex visuomotor sequence (LRN) and in a control group (SMP) performing a simple sequence, for 5 consecutive days. Consistent with behavioral results, where most improvements occurred between the two first days, structural changes in WM were observed only in the early phase of learning (d1-d2), and in overall learning (d1-d5). In LRNs, WM microstructure was altered in the tracts underlying the primary motor and sensorimotor cortices. Moreover, our structural findings in WM were related to changes in functional connectivity, assessed with resting-state functional MRI data in the same cohort, through analyses in regions of interest (ROIs). Significant changes in WM microstructure were found in a ROI underlying the right supplementary motor area. Together, our findings provide evidence for highly dynamic WM plasticity in the sensorimotor network during short-term MSL. ### Competing Interest Statement The authors have declared no competing interest.

Download data

  • Downloaded 127 times
  • Download rankings, all-time:
    • Site-wide: 121,935
    • In neuroscience: 18,757
  • Year to date:
    • Site-wide: 85,703
  • Since beginning of last month:
    • Site-wide: 79,952

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)