Leveraging molecular QTL to understand the genetic architecture of diseases and complex traits
By
Farhad Hormozdiari,
Steven Gazal,
Bryce van de Geijn,
Hilary Finucane,
Chelsea J.-T. Ju,
Po-Ru Loh,
Armin P. Schoech,
Yakir Reshef,
Xuanyao Liu,
Luke O’Connor,
Alexander Gusev,
Eleazar Eskin,
Alkes L. Price
Posted 15 Oct 2017
bioRxiv DOI: 10.1101/203380
(published DOI: 10.1038/s41588-018-0148-2)
There is increasing evidence that many GWAS risk loci are molecular QTL for gene expression (eQTL), histone modification (hQTL), splicing (sQTL), and/or DNA methylation (meQTL). Here, we introduce a new set of functional annotations based on causal posterior probabilities (CPP) of fine-mapped molecular cis-QTL, using data from the GTEx and BLUEPRINT consortia. We show that these annotations are very strongly enriched for disease heritability across 41 independent diseases and complex traits (average $N$=320K): 5.84x for GTEx eQTL, and 5.44x for eQTL, 4.27-4.28x for hQTL (H3K27ac and H3K4me1), 3.61x for sQTL and 2.81x for meQTL in BLUEPRINT (all P < 1.39e-10), far higher than enrichments obtained using standard functional annotations that include all significant molecular cis-QTL (1.17-1.80x). eQTL annotations that were obtained by meta-analyzing all 44 GTEx tissues generally performed best, but tissue-specific blood eQTL annotations produced stronger enrichments for autoimmune diseases and blood cell traits and tissue-specific brain eQTL annotations produced stronger enrichments for brain-related diseases and traits, despite high cis-genetic correlations of eQTL effect sizes across tissues. Notably, eQTL annotations restricted to loss-of-function intolerant genes from ExAC were even more strongly enriched for disease heritability (17.09x; vs. 5.84x for all genes; P = 4.90e-17 for difference). All molecular QTL except sQTL remained significantly enriched for disease heritability in a joint analysis conditioned on each other and on a broad set of functional annotations from previous studies, implying that each of these annotations is uniquely informative for disease and complex trait architectures.
Download data
- Downloaded 1,684 times
- Download rankings, all-time:
- Site-wide: 9,087
- In genetics: 448
- Year to date:
- Site-wide: 106,664
- Since beginning of last month:
- Site-wide: 74,607
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!