Optimizing CRISPR/Cas9 System to Precisely Model Plasminogen Activator Inhibitor-1 Point Mutations in Mice
By
Yang Liu,
Thomas L. Saunders,
Thomas Sisson,
Robert Blackburn,
David S Ginsberg,
Duane Day
Posted 26 Jan 2018
bioRxiv DOI: 10.1101/254805
CRISPR/Cas9 has become a powerful genome editing tool in recent years. CRISPR/Cas9 can be utilized to not only efficiently generate knock out models in various organisms, but also to precisely model human disease or variants to study gene function and develop therapies. However, the latter remains challenging because of low knock-in (KI) efficiency. In this study, precise gene editing modeling plasminogen activator inhibitor-1 (PAI-1) -tissue plasminogen activator (tPA) binding deficiency and PAI-1-vitronectin binding deficiency were generated respectively in mice. Optimization of single guide RNAs (sgRNA) and repair templates, and utilization of restriction fragment length polymorphism (RFLP) to detect KI events are described. Injection of sgRNA/Cas9/single-stranded oligodeoxynucleotide (ssODN) into mouse zygotes resulted in homozygous changes of two silent mutations and changed Arg369>Ala, which abolishes PAI-1 inhibitory activity against tPA. Targeting Arg124 and Gln146 simultaneously involved in vitronectin binding proved to be challenging. However, we successfully generated these relatively distant mutations (23 amino acids apart) seamlessly. Generation of the Arg124 mutation alone was achieved with over 60% efficiency along with the integration of a restriction site, compared to the relatively low double mutation frequency. In summary, our data indicates that the distance between desired mutations and CRISPR-induced double-stranded break (DSB) site is the most critical factor for achieving high efficiency in precise gene modification.
Download data
- Downloaded 1,002 times
- Download rankings, all-time:
- Site-wide: 18,506
- In genetics: 943
- Year to date:
- Site-wide: 24,395
- Since beginning of last month:
- Site-wide: 48,981
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!