Rxivist logo

Deep learning detection of informative features in tau PET for Alzheimer' s disease classification

By Taeho Jo, Kwangsik Nho, Shannon L. Risacher, Andrew J Saykin, for the Alzheimer’s Neuroimaging Initiative

Posted 21 Jul 2020
bioRxiv DOI: 10.1101/2020.07.20.212852

Background: Alzheimer's disease (AD) is the most common type of dementia, typically characterized by memory loss followed by progressive cognitive decline and functional impairment. Many clinical trials of potential therapies for AD have failed, and there is currently no approved disease-modifying treatment. Biomarkers for early detection and mechanistic understanding of disease course are critical for drug development and clinical trials. Amyloid has been the focus of most biomarker research. Here, we developed a deep learning-based framework to identify informative features for AD classification using tau positron emission tomography (PET) scans. Methods: We analysed [18F]flortaucipir PET image data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We first developed an image classifier to distinguish AD from cognitively normal (CN) older adults by training a 3D convolutional neural network (CNN)-based deep learning model on tau PET images (N=132; 66 CN and 66 AD), then applied the classifier to images from individuals with mild cognitive impairment (MCI; N=168). In addition, we applied a layer-wise relevance propagation (LRP)-based model to identify informative features and to visualize classification results. We compared these results with those from whole brain voxel-wise between-group analysis using conventional Statistical Parametric Mapping (SPM12). Results: The 3D CNN-based classification model of AD from CN yielded an average accuracy of 90.8% based on five-fold cross-validation. The LRP model identified the brain regions in tau PET images that contributed most to the AD classification from CN. The top identified regions included the hippocampus, parahippocampus, thalamus, and fusiform. The LRP results were consistent with those from the voxel-wise analysis in SPM12, showing significant focal AD associated regional tau deposition in the bilateral temporal lobes including the entorhinal cortex. The AD probability scores calculated by the classifier were correlated with brain tau deposition in the medial temporal lobe in MCI participants (r=0.43 for early MCI and r=0.49 for late MCI). Conclusion: A deep learning framework combining 3D CNN and LRP algorithms can be used with tau PET images to identify informative features for AD classification and may have application for early detection during prodromal stages of AD. ### Competing Interest Statement The authors have declared no competing interest.

Download data

  • Downloaded 50 times
  • Download rankings, all-time:
    • Site-wide: 95,424 out of 100,263
    • In neuroscience: 16,981 out of 17,843
  • Year to date:
    • Site-wide: 89,013 out of 100,263
  • Since beginning of last month:
    • Site-wide: None out of 100,263

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!