Rxivist logo

Mutations in the type 1 ryanodine receptor (RyR1), a Ca2+ release channel in skeletal muscle, hyperactivate the channel to cause malignant hyperthermia (MH) and are implicated in severe heat stroke. Dantrolene, the only approved drug for MH, has the disadvantages of having very poor water solubility and long plasma half-life. We show here that a novel RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively prevents and treats MH and heat stroke in several mouse models relevant to MH. Cpd1 reduced resting intracellular Ca2+, inhibited halothane- and isoflurane-induced Ca2+ release, suppressed caffeine-induced contracture in skeletal muscle, reduced sarcolemmal cation influx, and prevented or reversed the fulminant MH crisis induced by isoflurane anesthesia and rescued animals from heat stroke caused by environmental heat stress. Notably, Cpd1 has great advantages of better water solubility and rapid clearance in vivo over dantrolene. Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RyR1 mutations.

Download data

  • Downloaded 130 times
  • Download rankings, all-time:
    • Site-wide: 115,163
    • In pharmacology and toxicology: 929
  • Year to date:
    • Site-wide: 45,489
  • Since beginning of last month:
    • Site-wide: 45,489

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)