Identification of novel tetracycline resistance gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and colistin-resistant Empedobacter stercoris
By
Yingying Cheng,
Yong Chen,
Yang Liu,
Yuqi Guo,
Yanzi Zhou,
Tingting Xiao,
Shuntian Zhang,
Hao Xu,
Yunbo Chen,
Tongling Shan,
Yonghong Xiao,
Kai Zhou
Posted 18 Jun 2020
bioRxiv DOI: 10.1101/2020.06.17.155978
(published DOI: 10.1080/22221751.2020.1803769)
Tigecycline is one of the last-resort antibiotics to treat severe infections. Recently, tigecycline resistance has sporadically emerged with an increasing trend, and Tet(X) family represents a new resistance mechanism of tigecycline. In this study, a novel chromosome-encoded tigecycline resistance gene, tet(X14), was identified in a tigecycline-resistant and colistin-resistant Empedobacter stercoris strain ES183 recovered from a pig fecal sample in China. Tet(X14) shows 67.14-96.39% sequence identity to the other variants [Tet(X) to Tet(X13)]. Overexpression of Tet(X14) in Escherichia coli confers 16-fold increase in tigecycline MIC (from 0.125 to 2 mg/L), which is lower than that of Tet(X3), Tet(X4) and Tet(X6). Structural modelling predicted that Tet(X14) shared a high homology with the other 12 variants with RMSD value from 0.003 to 0.055, and Tet(X14) can interact with tetracyclines by a similar pattern as the other Tet(X)s. tet(X14) and two copies of tet(X2) were identified on a genome island with abnormal GC content carried by the chromosome of ES183, and no mobile genetic elements were found surrounding, suggesting that tet(X14) might be heterologously obtained by ES183 via recombination. Blasting in Genbank revealed that Tet(X14) was exclusively detected on the chromosome of Riemerella anatipestifer, mainly encoded on antimicrobial resistance islands. E. stercoris and R. anatipestifer belong to the family Flavobacteriaceae, suggesting that the members of Flavobacteriaceae maybe the major reservoir of tet(X14). Our study reports a novel chromosome-encoded tigecycline resistance gene tet(X14). The expanded members of Tet(X) family warrants the potential large-scale dissemination and the necessity of continuous surveillance for tet(X)-mediated tigecycline resistance. ### Competing Interest Statement The authors have declared no competing interest.
Download data
- Downloaded 184 times
- Download rankings, all-time:
- Site-wide: 100,776
- In genetics: 4,569
- Year to date:
- Site-wide: 66,353
- Since beginning of last month:
- Site-wide: 38,114
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!