Rxivist logo

SPOTlight:Seeded NMF regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes

By Marc Elosua, Paula Nieto, Elisabetta Mereu, Ivo Gut, Holger Heyn

Posted 04 Jun 2020
bioRxiv DOI: 10.1101/2020.06.03.131334

The integration of orthogonal data modalities greatly supports the interpretation of transcriptomic landscapes in complex tissues. In particular, spatially resolved gene expression profiles are key to understand tissue organization and function. However, spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes, and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). Using synthetic spots, simulating varying reference quantities and qualities, we confirmed high prediction accuracy also with shallowly sequenced or small-sized scRNA-seq reference datasets. We trained the NMF regression model with sample-matched or external datasets, resulting in accurate and sensitive spatial predictions. SPOTlight deconvolution of the mouse brain correctly mapped subtle neuronal cell states of the cortical layers and the defined architecture of the hippocampus. In human pancreatic cancer, we successfully segmented patient sections into healthy and cancerous areas, and further fine-mapped normal and neoplastic cell states. Trained on an external pancreatic tumor immune reference, we charted the localization of clinical-relevant and tumor-specific immune cell states. Using SPOTlight to detect regional enrichment of immune cells and their co-localization with tumor and adjacent stroma provides an illustrative example in its flexible application spectrum and future potential in digital pathology. ### Competing Interest Statement The authors have declared no competing interest.

Download data

  • Downloaded 1,516 times
  • Download rankings, all-time:
    • Site-wide: 6,716 out of 101,121
    • In bioinformatics: 1,150 out of 9,284
  • Year to date:
    • Site-wide: 1,385 out of 101,121
  • Since beginning of last month:
    • Site-wide: 1,605 out of 101,121

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!