𝓲-SATA: A MATLAB based toolbox to estimate Current Density generated by Transcranial Direct Current Stimulation in an Individual Brain
By
Rajan Kashyap,
Sagarika Bhattacharjee,
Ramaswamy Arumugam,
Kenichi Oishi,
John E Desmond,
SH Annabel Chen
Posted 30 May 2020
bioRxiv DOI: 10.1101/2020.05.28.120774
(published DOI: 10.1088/1741-2552/aba6dc)
Background: Transcranial Direct Current Stimulation (tDCS) is a technique where a weak current is passed through the electrodes placed on the scalp. The distribution of the electric current induced in the brain due to tDCS is provided by simulation toolbox like Realistic-volumetric-Approach-based-Simulator-for-Transcranial-electric-stimulation (ROAST). However, the procedure to estimate the total current density induced at the target and the intermediary region of the cortex is complex. The Systematic-Approach-for-tDCS-Analysis (SATA) was developed to overcome this problem. However, SATA is limited to standardized headspace only. Here we develop individual-SATA (i-SATA) to extend it to individual head. Method: T1-weighted images of 15 subjects were taken from two Magnetic Resonance Imaging (MRI) scanners of different strengths. Across the subjects, the montages were simulated in ROAST. i-SATA converts the ROAST output to Talairach space. The x, y and z coordinates of the anterior commissure (AC), posterior commissure (PC), and Mid-Sagittal (MS) points are necessary for the conversion. AC and PC are detected using the acpcdetect toolbox. We developed a method to determine the MS in the image and cross-verified its location manually using BrainSight. Result: Determination of points with i-SATA is fast and accurate. The i-SATA provided estimates of the current-density induced across an individuals cortical lobes and gyri as tested on images from two different scanners. Conclusion: Researchers can use i-SATA for customizing tDCS-montages. With i-SATA it is also easier to compute the inter-individual variation in current-density across the target and intermediary regions of the brain. The software is publicly available. ### Competing Interest Statement The authors have declared no competing interest.
Download data
- Downloaded 458 times
- Download rankings, all-time:
- Site-wide: 96,763
- In neuroscience: 13,613
- Year to date:
- Site-wide: 128,822
- Since beginning of last month:
- Site-wide: 131,998
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!