Application of Generalized Concentration Addition to Predict Mixture Effects of Glucocorticoid Receptor Ligands
By
Rosemarie de la Rosa,
JJ Schlezinger,
Martyn T. Smith,
Thomas F Webster
Posted 26 May 2020
bioRxiv DOI: 10.1101/2020.05.21.109439
(published DOI: 10.1016/j.tiv.2020.104975)
Environmental exposures often occur in complex mixtures and at low concentrations. Generalized concentration addition (GCA) is a method used to estimate the joint effect of receptor ligands that vary in efficacy. GCA models have been successfully applied to mixtures of aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands, each of which can be modeled as a receptor with a single binding site. Here, we evaluated whether GCA could be applied to homodimer nuclear receptors, which have two binding sites, to predict the combined effect of full glucocorticoid receptor (GR) agonists with partial agonists. We measured transcriptional activation of GR using a cell-based bioassay. Individual dose response curves for dexamethasone (full agonist), prednisolone (full agonist), and medroxyprogesterone 17-acetate (partial agonist) were generated and applied in three additivity models, GCA, effect summation (ES), and relative potency factor (RPF), to generate response surfaces. GCA and RPF yielded adequate predictions of the experimental data for two full agonists. However, GCA fit experimental data significantly better than ES and RPF for all other binary mixtures. This work extends the application of GCA to homodimer nuclear receptors and improves prediction accuracy of mixture effects of GR agonists. ### Competing Interest Statement The authors have declared no competing interest.
Download data
- Downloaded 129 times
- Download rankings, all-time:
- Site-wide: 116,699
- In pharmacology and toxicology: 942
- Year to date:
- Site-wide: 58,660
- Since beginning of last month:
- Site-wide: 44,193
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!