Rxivist logo

A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma

By Gregory P. Way, Robert J. Allaway, Stephanie J. Bouley, Camilo E Fadul, Yolanda Sanchez, Casey S. Greene

Posted 15 Sep 2016
bioRxiv DOI: 10.1101/075382 (published DOI: 10.1186/s12864-017-3519-7)

Background We have identified molecules that exhibit synthetic lethality in cells with loss of the neurofibromin 1 (NF1) tumor suppressor gene. However, recognizing tumors that have inactivation of the NF1 tumor suppressor function is challenging because the loss may occur via mechanisms that do not involve mutation of the genomic locus. Degradation of the NF1 protein, independent of NF1 mutation status, phenocopies inactivating mutations to drive tumors in human glioma cell lines. NF1 inactivation may alter the transcriptional landscape of a tumor and allow a machine learning classifier to detect which tumors will benefit from synthetic lethal molecules. Results We developed a strategy to predict tumors with low NF1 activity and hence tumors that may respond to treatments that target cells lacking NF1. Using RNAseq data from The Cancer Genome Atlas (TCGA), we trained an ensemble of 500 logistic regression classifiers that integrates mutation status with whole transcriptomes to predict NF1 inactivation in glioblastoma (GBM). On TCGA data, the classifier detected NF1 mutated tumors (test set area under the receiver operating characteristic curve (AUROC) mean = 0.77, 95% quantile = 0.53 - 0.95) over 50 random initializations. On RNA-Seq data transformed into the space of gene expression microarrays, this method produced a classifier with similar performance (test set AUROC mean = 0.77, 95% quantile = 0.53 - 0.96). We applied our ensemble classifier trained on the transformed TCGA data to a microarray validation set of 12 samples with matched RNA and NF1 protein-level measurements. The classifier's NF1 score was associated with NF1 protein concentration in these samples. Conclusions We demonstrate that TCGA can be used to train accurate predictors of NF1 inactivation in GBM. The ensemble classifier performed well for samples with very high or very low NF1 protein concentrations but had mixed performance in samples with intermediate NF1 concentrations. Nevertheless, high-performing and validated predictors have the potential to be paired with targeted therapies and personalized medicine.

Download data

  • Downloaded 1,008 times
  • Download rankings, all-time:
    • Site-wide: 12,404 out of 100,360
    • In genomics: 1,685 out of 6,222
  • Year to date:
    • Site-wide: 46,635 out of 100,360
  • Since beginning of last month:
    • Site-wide: None out of 100,360

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!