Automated identification of multinucleated germ cells with U-Net
By
Samuel Bell,
Andras Zsom,
Justin Conley,
Daniel Spade
Posted 20 Feb 2020
bioRxiv DOI: 10.1101/2020.02.20.957332
(published DOI: 10.1371/journal.pone.0229967)
Phthalic acid esters (phthalates) are male reproductive toxicants, which exert their most potent toxicity during a critical window of sensitivity in fetal development. In the fetal rat, exposure to phthalates reduces testosterone biosynthesis, alters the development of seminiferous cords and other male reproductive tissues, and induces the formation of abnormal multinucleated germ cells (MNGs). Identification of MNGs is a time-intensive process, and it requires specialized training to identify MNGs in histological sections. As a result, MNGs are not routinely quantified in phthalate toxicity experiments. In order to speed up and standardize this process, we have developed an improved method for automated detection of MNGs. Using hand-labeled histological section images with human-identified MNGs, we trained a convolutional neural network with a U-Net architecture to identify MNGs on unlabeled images. With unseen hand-labeled images not used in model training, we assessed the performance of the model, using five different configurations of the data. On average, the model reached near human accuracy, and in the best model, it exceeded it. The use of automated image analysis will allow data on this histopathological endpoint to be more readily collected for analysis of phthalate toxicity. Our trained model application code is available for download at github.com/brown-ccv/mngcount.
Download data
- Downloaded 119 times
- Download rankings, all-time:
- Site-wide: 118,048
- In pharmacology and toxicology: 972
- Year to date:
- Site-wide: 122,047
- Since beginning of last month:
- Site-wide: None
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!