Rxivist logo

Deep-coverage whole genome sequencing at the population level is now feasible and offers potential advantages for locus discovery, particularly in the analysis rare mutations in non-coding regions. Here, we performed whole genome sequencing in 16,324 participants from four ancestries at mean depth >29X and analyzed correlations of genotypes with four quantitative traits - plasma levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. We conducted a discovery analysis including common or rare variants in coding as well as non-coding regions and developed a framework to interpret genome sequence for dyslipidemia risk. Common variant association yielded loci previously described with the exception of a few variants not captured earlier by arrays or imputation. In coding sequence, rare variant association yielded known Mendelian dyslipidemia genes and, in non-coding sequence, we detected no rare variant association signals after application of four approaches to aggregate variants in non-coding regions. We developed a new, genome-wide polygenic score for LDL-C and observed that a high polygenic score conferred similar effect size to a monogenic mutation (~30 mg/dl higher LDL-C for each); however, among those with extremely high LDL-C, a high polygenic score was considerably more prevalent than a monogenic mutation (23% versus 2% of participants, respectively).

Download data

  • Downloaded 2,069 times
  • Download rankings, all-time:
    • Site-wide: 3,735 out of 100,306
    • In genomics: 658 out of 6,221
  • Year to date:
    • Site-wide: 70,194 out of 100,306
  • Since beginning of last month:
    • Site-wide: 15,147 out of 100,306

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!