Rxivist logo

5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design

By Ji Hun Kim, Katelyn R. Titus, Wanfeng Gong, Jonathan A. Beagan, Zhendong Cao, Jennifer E. Phillips-Cremins

Posted 10 Jan 2018
bioRxiv DOI: 10.1101/244285 (published DOI: 10.1016/j.ymeth.2018.05.005)

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C generates high quality, high resolution maps of looping interactions genome-wide, but is intractable for high-throughput screening of loops across conditions due to the requirement of an enormous number of reads (>6 Billion) per library. Here, we describe 5C-ID, an updated version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a new double alternating design. 5C-ID reduces spatial noise and enables higher resolution 3D genome folding maps than canonical 5C, allowing for a marked improvement in sensitivity and specificity of loop detection. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.

Download data

  • Downloaded 1,049 times
  • Download rankings, all-time:
    • Site-wide: 12,827 out of 103,764
    • In genomics: 1,717 out of 6,382
  • Year to date:
    • Site-wide: 48,829 out of 103,764
  • Since beginning of last month:
    • Site-wide: 42,932 out of 103,764

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)