Rxivist logo

Robustness and applicability of functional genomics tools on scRNA-seq data

By Christian H. Holland, Jovan Tanevski, Jan Gleixner, Manu P. Kumar, Elisabetta Mereu, Javier Perales-Patón, Brian A. Joughin, O Stegle, Douglas A. Lauffenburger, Holger Heyn, Bence Szalai, Julio Saez-Rodriguez

Posted 01 Sep 2019
bioRxiv DOI: 10.1101/753319

Many tools have been developed to extract functional and mechanistic insight from bulk transcriptome profiling data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events, low library sizes and a comparatively large number of samples/cells. It is thus not clear if functional genomics tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way. To address this question, we performed benchmark studies on in silico and in vitro single-cell RNA-seq data. We included the bulk-RNA tools PROGENy, GO enrichment and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compared them against the tools AUCell and metaVIPER, designed for scRNA-seq. For the in silico study we simulated single cells from TF/pathway perturbation bulk RNA-seq experiments. Our simulation strategy guarantees that the information of the original perturbation is preserved while resembling the characteristics of scRNA-seq data. We complemented the in silico data with in vitro scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on both the simulated and real data revealed comparable performance to the original bulk data. Additionally, we showed that the TF and pathway activities preserve cell-type specific variability by analysing a mixture sample sequenced with 13 scRNA-seq different protocols. Our analyses suggest that bulk functional genomics tools can be applied to scRNA-seq data, outperforming dedicated single cell tools. Furthermore we provide a benchmark for further methods development by the community.

Download data

  • Downloaded 1,131 times
  • Download rankings, all-time:
    • Site-wide: 11,015 out of 101,137
    • In bioinformatics: 1,760 out of 9,286
  • Year to date:
    • Site-wide: 11,846 out of 101,137
  • Since beginning of last month:
    • Site-wide: 24,365 out of 101,137

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!