Rxivist logo

Dissecting the Roles of Kalirin-7/PSD95/GluN2B Interactions in Different Forms of Synaptic Plasticity

By Mason L Yeh, Jessica R Yasko, Eric S Levine, Betty A. Eipper, Richard E. Mains

Posted 22 Aug 2019
bioRxiv DOI: 10.1101/744508

Kalirin-7 (Kal7) is a Rac1/RhoG GEF and multidomain scaffold localized to the postsynaptic density which plays an important role in synaptic plasticity. Behavioral and physiological phenotypes observed in the Kal7 knockout mouse are quite specific: genetics of breeding, growth, strength and coordination are normal; Kal7 knockout animals self-administer cocaine far more than normal mice, show exaggerated locomotor responses to cocaine, but lack changes in dendritic spine morphology seen in wildtype mice; Kal7 knockout mice have depressed surface expression of GluN2B receptor subunits and exhibit marked suppression of long-term potentiation and depression in hippocampus, cerebral cortex, and spinal cord; and Kal7 knockout mice have dramatically blunted perception of pain. To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we administered intracellular blocking peptides to acutely change Kal7 function at the synapse, to determine if plasticity deficits in Kal7-/- mice are the product of developmental processes since conception, or could be detected on a much shorter time scale. We found that specific disruption of the interactions of Kal7 with PSD-95 or GluN2B resulted in significant suppression of long-term potentiation and long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.

Download data

  • Downloaded 179 times
  • Download rankings, all-time:
    • Site-wide: 99,952
    • In neuroscience: 15,605
  • Year to date:
    • Site-wide: None
  • Since beginning of last month:
    • Site-wide: None

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)