Cortical Overgrowth in a Preclinical Forebrain Organoid Model of CNTNAP2-Associated Autism Spectrum Disorder
By
Job O de Jong,
Ceyda Llapashtica,
Kevin Strauss,
Frank Provenzano,
Yan Sun,
Giuseppe P Cortese,
Karlla W Brigatti,
Barbara Corneo,
Bianca Migliori,
Steven A Kushner,
Christoph Kellendonk,
Jonathan A. Javitch,
Bin Xu,
Sander Markx
Posted 19 Aug 2019
bioRxiv DOI: 10.1101/739391
Autism spectrum disorder (ASD) represents a major public health burden but translating promising treatment findings from preclinical non-human models of ASD to the clinic has remained challenging. The recent development of forebrain organoids generated from human induced pluripotent stem cells (hiPSCs) derived from subjects with brain disorders is a promising method to study human-specific neurobiology, and may facilitate the development of novel therapeutics. In this study, we utilized forebrain organoids generated from hiPSCs derived from patients from the Old Order Amish community with a rare syndromic form of ASD, carrying a homozygous c.3709DelG mutation in CNTNAP2 and healthy controls to investigate the effects of this mutation on cortical embryonic development. Patients carrying the c.3709DelG mutation in CNTNAP2 present with an increased head circumference and brain MRI reveals an increase in gray matter volume. Patient-derived organoids displayed an increase in total volume that was driven by an increased proliferation in neural progenitor cells, leading to an increase in the generation of cortical neuronal and non-neuronal cell types. The observed phenotypes were rescued after correction of the pathogenic mutation using CRISPR-Cas9. RNA sequencing revealed 339 genes differentially expressed between patient- and control-derived organoids of which a subset are implicated in cell proliferation and neurogenesis. Notably, these differentially expressed genes included previously identified ASD-associated genes and are enriched for genes in ASD-associated weighted gene co-expression networks. This work provides a critical step towards understanding the role of CNTNAP2 in human cortical development and has important mechanistic implications for ASD associated with brain overgrowth. This CNTNAP2 organoid model provides opportunity for further mechanistic inquiry and development of new therapeutic strategies for ASD.
Download data
- Downloaded 651 times
- Download rankings, all-time:
- Site-wide: 33,898
- In neuroscience: 4,846
- Year to date:
- Site-wide: 46,751
- Since beginning of last month:
- Site-wide: 26,700
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!