Rxivist logo

Sirtuins are key players in the response to oxidative, metabolic and genotoxic stress, and are involved in genome stability, metabolic homeostasis and aging. Originally described as NAD+-dependent deacetylases, some sirtuins are also characterized by a poorly understood mono-ADP-ribosyltransferase (mADPRT) activity. Here we report that the deacetylase SirT7 is a dual sirtuin as it also features auto-mADPRT activity. Molecular and structural evidence suggests that this novel activity occurs at a second previously undefined active site that is physically separated in another domain. Specific abrogation of this activity alters SirT7 chromatin distribution, suggesting a role for this modification in SirT7 chromatin binding specificity. We uncover an epigenetic pathway by which ADP-ribosyl-SirT7 is recognized by the ADP-ribose reader macroH2A1.1, a histone variant involved in chromatin organization, metabolism and differentiation. Glucose starvation (GS) boosts this interaction and promotes SirT7 relocalization to intergenic regions in a macroH2A1-dependent manner. Both SirT7 activities are in turn required to promote GS-dependent enrichment of macroH2A1 in a subset of nearby genes, which results in their specific up- or downregulation. Consistently, the expression changes of these genes associated to calorie restriction (CR) or aging are abrogated in SirT7-/- mice, reinforcing the link between Sirtuins, CR and aging. Our work provides a novel perspective about sirtuin duality and suggests a key role for SirT7/macroH2A1.1 axis in mammalian glucose homeostasis, calorie restriction signaling and aging.

Download data

  • Downloaded 437 times
  • Download rankings, all-time:
    • Site-wide: 38,149 out of 92,466
    • In molecular biology: 1,255 out of 3,166
  • Year to date:
    • Site-wide: 17,433 out of 92,466
  • Since beginning of last month:
    • Site-wide: 10,891 out of 92,466

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)