Rxivist logo

MEGSA: A powerful and flexible framework for analyzing mutual exclusivity of tumor mutations

By Xing Hua, Paula L. Hyland, Jing Huang, Bin Zhu, Neil E. Caporaso, Maria Teresa Landi, Nilanjan Chatterjee, Jianxin Shi

Posted 09 Apr 2015
bioRxiv DOI: 10.1101/017731 (published DOI: 10.1016/j.ajhg.2015.12.021)

The central challenge in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when patients carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, pathway-guided searches or for expanding established small MEGS. We applied our method to the whole exome sequencing data for fourteen cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a novel MEGS with five genes (FLT3, IDH2, NRAS, KIT and TP53) and a MEGS (NPM1, TP53 and RUX1) whose mutation status was strongly associated with survival (P=6.7×10-4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23 and TBL1XR1), providing support for their role as cancer drivers. Keywords: Mutual exclusivity, oncogenic pathways, driver genes, tumor sequencing

Download data

  • Downloaded 620 times
  • Download rankings, all-time:
    • Site-wide: 25,657 out of 100,250
    • In bioinformatics: 3,526 out of 9,215
  • Year to date:
    • Site-wide: 93,997 out of 100,250
  • Since beginning of last month:
    • Site-wide: None out of 100,250

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!