Rxivist logo

The Dreem Headband as an Alternative to Polysomnography for EEG Signal Acquisition and Sleep Staging

By Pierrick J Arnal, Valentin Thorey, Michael E. Ballard, Albert Bou Hernandez, Antoine Guillot, Hugo Jourde, Mason Harris, Mathias Guillard, Pascal Van Beers, Mounir Chennaoui, Fabien Sauvet

Posted 10 Jun 2019
bioRxiv DOI: 10.1101/662734

Despite the central role of sleep in our lives and the high prevalence of sleep disorders, sleep is still poorly understood. The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is critical to advancing sleep science and facilitating the diagnosis of sleep disorders. We introduced the Dreem headband (DH) as an affordable, comfortable, and user-friendly alternative to polysomnography (PSG). The purpose of this study was to assess the signal acquisition of the DH and the performance of its embedded automatic sleep staging algorithms compared to the gold-standard clinical PSG scored by 5 sleep experts. Thirty-one subjects completed an over-night sleep study at a sleep center while wearing both a PSG and the DH simultaneously. We assessed 1) the EEG signal quality between the DH and the PSG, 2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG, and 3) the performance of the DH's automatic sleep staging according to AASM guidelines vs. PSG sleep experts manual scoring. Results demonstrate a strong correlation between the EEG signals acquired by the DH and those from the PSG, and the signals acquired by the DH enable monitoring of alpha (r= 0.71 ± 0.13), beta (r= 0.71 ± 0.18), delta (r = 0.76 ± 0.14), and theta (r = 0.61 ± 0.12) frequencies during sleep. The mean absolute error for heart rate, breathing frequency and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm and 3.2 ± 0.6%, respectively. Automatic Sleep Staging reached an overall accuracy of 83.5 ± 6.4% (F1 score : 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for the five sleep experts. These results demonstrate the capacity of the DH to both precisely monitor sleep-related physiological signals and process them accurately into sleep stages. This device paves the way for high-quality, large-scale, longitudinal sleep studies.

Download data

  • Downloaded 5,034 times
  • Download rankings, all-time:
    • Site-wide: 769 out of 92,253
    • In neuroscience: 81 out of 16,420
  • Year to date:
    • Site-wide: 637 out of 92,253
  • Since beginning of last month:
    • Site-wide: 2,719 out of 92,253

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News