Functional brain network modeling in sub-acute stroke patients and healthy controls during rest and continuous attentive tracking
By
Erlend S. Dørum,
Tobias Kaufmann,
Dag Alnæs,
Genevieve Richard,
Knut K. Kolskår,
Andreas Engvig,
Anne-Marthe Sanders,
Kristine Ulrichsen,
Hege Ihle-Hansen,
Jan Egil Nordvik,
Lars T Westlye
Posted 21 May 2019
bioRxiv DOI: 10.1101/644765
(published DOI: 10.1016/j.heliyon.2020.e04854)
A cerebral stroke is characterized by compromised brain function due to an interruption in cerebrovascular blood supply. Although stroke incurs focal damage determined by the vascular territory affected, clinical symptoms commonly involve multiple functions and cognitive faculties that are insufficiently explained by the focal damage alone. Functional connectivity (FC) refers to the synchronous activity between spatially remote brain regions organized in a network of interconnected brain regions. Functional magnetic resonance imaging (fMRI) has advanced this system-level understanding of brain function, elucidating the complexity of stroke outcomes, as well as providing information useful for prognostic and rehabilitation purposes. We tested for differences in brain network connectivity between a group of patients with minor ischemic strokes in sub-acute phase (n=44) and matched controls (n=100). As neural network configuration is dependent on cognitive effort, we obtained fMRI data during rest and two load levels of a multiple object tacking (MOT) task. Network nodes and time-series were estimated using independent component analysis (ICA) and dual regression, with network edges defined as the partial temporal correlations between node pairs. The full set of edgewise FC went into a cross-validated regularized linear discriminant analysis (rLDA) to classify groups and cognitive load. MOT task performance and cognitive tests revealed no significant group differences. While multivariate machine learning revealed high sensitivity to experimental condition, with classification accuracies between rest and attentive tracking approaching 100%, group classification was at chance level, with negligible differences between conditions. Repeated measures ANOVA showed significantly stronger synchronization between a temporal node and a sensorimotor node in patients across conditions. Overall, the results revealed high sensitivity of FC indices to task conditions, and suggest relatively small brain network-level disturbances after clinically mild strokes.
Download data
- Downloaded 294 times
- Download rankings, all-time:
- Site-wide: 78,460
- In neuroscience: 12,268
- Year to date:
- Site-wide: 104,543
- Since beginning of last month:
- Site-wide: 65,550
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!