Rxivist logo

A novel quantile regression approach for eQTL discovery

By Xiaoyu Song, Gen Li, Iuliana Ionita-Laza, Ying Wei

Posted 17 Aug 2016
bioRxiv DOI: 10.1101/070052

Over the past decade, there has been a remarkable improvement in our understanding of the role of genetic variation in complex human diseases, especially via genome-wide association studies. However, the underlying molecular mechanisms are still poorly characterized, impending the development of therapeutic interventions. Identifying genetic variants that influence the expression level of a gene, i.e. expression quantitative trait loci (eQTLs), can help us understand how genetic variants influence traits at the molecular level. While most eQTL studies focus on identifying mean effects on gene expression using linear regression, evidence suggests that genetic variation can impact the entire distribution of the expression level. Indeed, several studies have already investigated higher order associations with a special focus on detecting heteroskedasticity. In this paper, we develop a Quantile Rank-score Based Test (QRBT) to identify eQTLs that are associated with the conditional quantile functions of gene expression. We have applied the proposed QRBT to the Genotype-Tissue Expression project, an international tissue bank for studying the relationship between genetic variation and gene expression in human tissues, and found that the proposed QRBT complements the existing methods, and identifies new eQTLs with heterogeneous effects across different quantile levels. Notably, we show that the eQTLs identified by QRBT but missed by linear regression are more likely to be tissue specific, and also associated with greater enrichment in genome-wide significant SNPs from the GWAS catalog. An R package implementing QRBT is available on our website.

Download data

  • Downloaded 660 times
  • Download rankings, all-time:
    • Site-wide: 25,340 out of 100,904
    • In bioinformatics: 3,479 out of 9,264
  • Year to date:
    • Site-wide: 85,840 out of 100,904
  • Since beginning of last month:
    • Site-wide: 91,453 out of 100,904

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!