Rxivist logo

Single Cortical Neurons as Deep Artificial Neural Networks

By David Beniaguev, Idan Segev, Michael London

Posted 18 Apr 2019
bioRxiv DOI: 10.1101/613141

We introduce a novel approach to study neurons as sophisticated I/O information processing units by utilizing recent advances in the field of machine learning. We trained deep neural networks (DNNs) to mimic the I/O behavior of a detailed nonlinear model of a layer 5 cortical pyramidal cell, receiving rich spatio-temporal patterns of input synapse activations. A Temporally Convolutional DNN (TCN) with seven layers was required to accurately, and very efficiently, capture the I/O of this neuron at the millisecond resolution. This complexity primarily arises from local NMDA-based nonlinear dendritic conductances. The weight matrices of the DNN provide new insights into the I/O function of cortical pyramidal neurons, and the approach presented can provide a systematic characterization of the functional complexity of different neuron types. Our results demonstrate that cortical neurons can be conceptualized as multi-layered “deep” processing units, implying that the cortical networks they form have a non-classical architecture and are potentially more computationally powerful than previously assumed.

Download data

  • Downloaded 6,611 times
  • Download rankings, all-time:
    • Site-wide: 1,253
    • In neuroscience: 58
  • Year to date:
    • Site-wide: 2,688
  • Since beginning of last month:
    • Site-wide: 2,688

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)