Rxivist logo

Neurogranin Stimulates Ca2+/calmodulin-dependent Kinase II by Inhibiting Calcineurin at Specific Calcium Spike Frequencies

By Lu Li, Massimo Lai, Stephen Cole, Nicolas Gambardella Le Novère, Stuart J. Edelstein

Posted 02 Apr 2019
bioRxiv DOI: 10.1101/597278

Calmodulin sits at the centre of molecular mechanisms underlying learning and memory. Its complex, and sometimes opposite influences, via the binding to various proteins, are yet to be fully understood. Calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) both bind open calmodulin, favouring Long-term potentiation (LTP) or depression (LTD) respectively. Neurogranin binds to the closed conformation of calmodulin and its impact on synaptic plasticity is less clear. We set up a mechanistic computational model based on allosteric principles to simulate calmodulin state transitions and its interaction with calcium ions and the three binding partners mentioned above. We simulated calcium spikes at various frequencies and show that neurogranin regulates synaptic plasticity along three modalities. At low spike frequencies, neurogranin inhibits the onset of LTD by limiting CaN activation. At intermediate frequencies, neurogranin limits LTP by precluding binding of CaMKII with calmodulin. Finally, at high spike frequencies, neurogranin promotes LTP by enhancing CaMKII autophosphorylation. While neurogranin might act as a calmodulin buffer, it does not significantly preclude the calmodulin opening by calcium. On the contrary, neurogranin synchronizes the opening of calmodulin’s two lobes and promotes their activation at specific frequencies, increasing the chance of CaMKII trans-autophosphorylation. Taken together, our study reveals dynamic regulatory roles played by neurogranin on synaptic plasticity, which provide mechanistic explanations to opposing experimental findings.

Download data

  • Downloaded 304 times
  • Download rankings, all-time:
    • Site-wide: 79,119
    • In neuroscience: 12,247
  • Year to date:
    • Site-wide: None
  • Since beginning of last month:
    • Site-wide: None

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News