Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 71,071 bioRxiv papers from 310,049 authors.

Transitions in brain-network level information processing dynamics are driven by alterations in neural gain

By Mike Li, Yinuo Han, Matthew J. Aburn, Michael Breakspear, Russell A. Poldrack, James M. Shine, Joseph T. Lizier

Posted 19 Mar 2019
bioRxiv DOI: 10.1101/581538

A key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system. In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain led to a ‘critical’ transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.

Download data

  • Downloaded 449 times
  • Download rankings, all-time:
    • Site-wide: 26,031 out of 71,071
    • In neuroscience: 4,447 out of 12,792
  • Year to date:
    • Site-wide: 26,430 out of 71,071
  • Since beginning of last month:
    • Site-wide: 27,875 out of 71,071

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)