Learning Structural Motif Representations For Efficient Protein Structure Search
By
Yang Liu,
Qing Ye,
Liwei Wang,
Jian Peng
Posted 14 May 2017
bioRxiv DOI: 10.1101/137828
(published DOI: 10.1093/bioinformatics/bty585)
Understanding the relationship between protein structure and function is a fundamental problem in protein science. Given a protein of unknown function, fast identification of similar protein structures from the Protein Data Bank (PDB) is a critical step for inferring its biological function. Such structural neighbors can provide evolutionary insights into protein conformation, interfaces and binding sites that are not detectable from sequence similarity. However, the computational cost of performing pairwise structural alignment against all structures in PDB is prohibitively expensive. Alignment-free approaches have been introduced to enable fast but coarse comparisons by representing each protein as a vector of structure features or fingerprints and only computing similarity between vectors. As a notable example, FragBag represents each protein by a “bag of fragments”, which is a vector of frequencies of contiguous short backbone fragments from a predetermined library. Here we present a new approach to learning effective structural motif presentations using deep learning. We develop DeepFold, a deep convolutional neural network model to extract structural motif features of a protein structure. Similar to FragBag, DeepFold represents each protein structure or fold using a vector of learned structural motif features. We demonstrate that DeepFold substantially outperforms FragBag on protein structural search on a non-redundant protein structure database and a set of newly released structures. Remarkably, DeepFold not only extracts meaningful backbone segments but also finds important long-range interacting motifs for structural comparison. We expect that DeepFold will provide new insights into the evolution and hierarchical organization of protein structural motifs. The source code for generating DeepFold representation can be downloaded at https://github.com/largelymfs/DeepFold.
Download data
- Downloaded 1,231 times
- Download rankings, all-time:
- Site-wide: 13,552
- In bioinformatics: 1,702
- Year to date:
- Site-wide: 78,239
- Since beginning of last month:
- Site-wide: 78,624
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!