Rxivist logo

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed two independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo . Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro , as well as primary tumor growth and metastatic colonization of the lung in vivo . Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 ( Robo1 ) leading to activation of a Myc transcriptional programme. * CSC : Cancer stem cell TNBC : Triple Negative Breast Cancer Id : Id1 and Id3

Download data

  • Downloaded 1,496 times
  • Download rankings, all-time:
    • Site-wide: 10,042
    • In cancer biology: 199
  • Year to date:
    • Site-wide: 21,335
  • Since beginning of last month:
    • Site-wide: 19,459

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News