Rxivist logo

Single Trial Decoding of Scalp EEG Under Natural Conditions

By Greta Tuckute, Sofie Therese Hansen, Nicolai Pedersen, Dea Steenstrup, Lars Kai Hansen

Posted 29 Nov 2018
bioRxiv DOI: 10.1101/481630 (published DOI: 10.1155/2019/9210785)

There is significant current interest in decoding mental states from electro-encephalography (EEG) recordings. EEG signals are subject-specific, sensitive to disturbances, and have a low signal-to-noise ratio, which has been mitigated by the use of laboratory-grade EEG acquisition equipment under highly controlled conditions. In the present study, we investigate single-trial decoding of natural, complex stimuli based on scalp EEG acquired with a portable, 32 dry-electrode sensor system in a typical office setting. We probe generalizability by a leave-one-subject-out cross-validation approach. We demonstrate that Support Vector Machine (SVM) classifiers trained on a relatively small set of de-noised (averaged) pseudo-trials perform on par with classifiers trained on a large set of noisy single-trial samples. For visualization of EEG signatures exploited by SVM classifiers, we propose a novel method for computing sensitivity maps of EEG-based SVM classifiers. Moreover, we apply the NPAIRS resampling framework for estimation of map uncertainty and show that effect sizes of sensitivity maps for classifiers trained on small samples of de-noised data and large samples of noisy data are similar. Finally, we demonstrate that the average pseudo-trial classifier can successfully predict the class of single trials from withheld subjects, which allows for fast classifier training, parameter optimization and unbiased performance evaluation in machine learning approaches for brain decoding.

Download data

  • Downloaded 567 times
  • Download rankings, all-time:
    • Site-wide: 27,638 out of 92,185
    • In neuroscience: 4,660 out of 16,393
  • Year to date:
    • Site-wide: 46,893 out of 92,185
  • Since beginning of last month:
    • Site-wide: 62,850 out of 92,185

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)