Rxivist logo

Lineage tracing on transcriptional landscapes links state to fate during differentiation

By Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando Camargo, Allon M. Klein

Posted 11 Nov 2018
bioRxiv DOI: 10.1101/467886 (published DOI: 10.1126/science.aaw3381)

A challenge in stem cell biology is to associate molecular differences among progenitor cells with their capacity to generate mature cell types. Though the development of single cell assays allows for the capture of progenitor cell states in great detail, these assays cannot definitively link those molecular states to their long-term fate. Here, we use expressed DNA barcodes to clonally trace single cell transcriptomes dynamically during differentiation and apply this approach to the study of hematopoiesis. Our analysis identifies functional boundaries of cell potential early in the hematopoietic hierarchy and locates them on a continuous transcriptional landscape. Additionally, we find that the monocyte lineage differentiates through two distinct transcriptional and clonal routes, leaving a persistent imprint on mature cells. Finally, we use our approach to reflect on current methods of dynamics inference from single-cell snapshots. We find that for in vitro hematopoiesis, published fate prediction algorithms do not detect lineage priming in early progenitors, and provide evidence that there are hidden properties that influence cell fate but are not detectable with current single-cell sequencing methods.

Download data

  • Downloaded 5,767 times
  • Download rankings, all-time:
    • Site-wide: 675 out of 101,083
    • In systems biology: 18 out of 2,567
  • Year to date:
    • Site-wide: 1,774 out of 101,083
  • Since beginning of last month:
    • Site-wide: 6,507 out of 101,083

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!