Rxivist logo

Wiring together large single-cell RNA-seq sample collections

By Nikolas Barkas, Viktor Petukhov, Daria Nikolaeva, Yaroslav Lozinsky, Samuel Demharter, Konstantin Khodosevich, Peter V. Kharchenko

Posted 02 Nov 2018
bioRxiv DOI: 10.1101/460246

Single-cell RNA-seq methods are being increasingly applied in complex study designs, which involve measurements of many samples, commonly spanning multiple individuals, conditions, or tissue compartments. Joint analysis of such extensive, and often heterogeneous, sample collections requires a way of identifying and tracking recurrent cell subpopulations across the entire collection. Here we describe a flexible approach, called Conos (Clustering On Network Of Samples), that relies on multiple plausible inter-sample mappings to construct a global graph connecting all measured cells. The graph can then be used to propagate information between samples and to identify cell communities that show consistent grouping across broad subsets of the collected samples. Conos results enable investigators to balance between resolution and breadth of the detected subpopulations. In this way, it is possible to focus on the fine-grained clusters appearing within more similar subsets of samples, or analyze coarser clusters spanning broader sets of samples in the collection. Such multi-resolution joint clustering provides an important basis for downstream analysis and interpretation of sizable multi-sample single-cell studies and atlas-scale collections.

Download data

  • Downloaded 3,356 times
  • Download rankings, all-time:
    • Site-wide: 1,179 out of 77,600
    • In bioinformatics: 226 out of 7,500
  • Year to date:
    • Site-wide: 2,067 out of 77,600
  • Since beginning of last month:
    • Site-wide: 2,083 out of 77,600

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)