Rxivist logo

Comparison of single-cell whole-genome amplification strategies

By Nuria Estévez-Gómez, Tamara Prieto, Amy Guillaumet-Adkins, Holger Heyn, Sonia Prado-López, David Posada

Posted 16 Oct 2018
bioRxiv DOI: 10.1101/443754

Single-cell genomics is an alluring area that holds the potential to change the way we understand cell populations. Due to the small amount of DNA within a single cell, whole-genome amplification becomes a mandatory step in many single-cell applications. Unfortunately, single-cell whole-genome amplification (scWGA) strategies suffer from several technical biases that complicate the posterior interpretation of the data. Here we compared the performance of six different scWGA methods (GenomiPhi, REPLIg, TruePrime, Ampli1, MALBAC, and PicoPLEX) after amplifying and low-pass sequencing the complete genome of 230 healthy/tumoral human cells. Overall, REPLIg outperformed competing methods regarding DNA yield, amplicon size, amplification breadth, amplification uniformity -being the only method with a random amplification bias-, and false single-nucleotide variant calls. On the other hand, non-MDA methods, and in particular Ampli1, showed less allelic imbalance and ADO, more reliable copy-number profiles and less chimeric amplicons. While no single scWGA method showed optimal performance for every aspect, they clearly have distinct advantages. Our results provide a convenient guide for selecting a scWGA method depending on the question of interest while revealing relevant weaknesses that should be considered during the analysis and interpretation of single-cell sequencing data.

Download data

  • Downloaded 2,609 times
  • Download rankings, all-time:
    • Site-wide: 2,691 out of 101,137
    • In genomics: 489 out of 6,270
  • Year to date:
    • Site-wide: 3,799 out of 101,137
  • Since beginning of last month:
    • Site-wide: 5,720 out of 101,137

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!