Rxivist logo

Minimal phenotyping refers to the reliance on the use of a small number of self-report items for disease case identification. This strategy has been applied to genome-wide association studies (GWAS) of major depressive disorder (MDD). Here we report that the genotype derived heritability (h2SNP) of depression defined by minimal phenotyping (14%, SE = 0.8%) is lower than strictly defined MDD (26%, SE = 2.2%). This cannot be explained by differences in prevalence between definitions or including cases of lower liability to MDD in minimal phenotyping definitions of depression, but can be explained by misdiagnosis of those without depression or with related conditions as cases of depression. Depression defined by minimal phenotyping is as genetically correlated with strictly defined MDD (rG = 0.81, SE = 0.03) as it is with the personality trait neuroticism (rG = 0.84, SE = 0.05), a trait not defined by the cardinal symptoms of depression. While they both show similar shared genetic liability with neuroticism, a greater proportion of the genome contributes to the minimal phenotyping definitions of depression (80.2%, SE = 0.6%) than to strictly defined MDD (65.8%, SE = 0.6%). We find that GWAS loci identified in minimal phenotyping definitions of depression are not specific to MDD: they also predispose to other psychiatric conditions. Finally, while highly predictive polygenic risk scores can be generated from minimal phenotyping definitions of MDD, the predictive power can be explained entirely by the sample size used to generate the polygenic risk score, rather than specificity for MDD. Our results reveal that genetic analysis of minimal phenotyping definitions of depression identifies non-specific genetic factors shared between MDD and other psychiatric conditions. Reliance on results from minimal phenotyping for MDD may thus bias views of the genetic architecture of MDD and may impede our ability to identify pathways specific to MDD.

Download data

  • Downloaded 1,910 times
  • Download rankings, all-time:
    • Site-wide: 4,572 out of 101,433
    • In genetics: 327 out of 5,040
  • Year to date:
    • Site-wide: 9,354 out of 101,433
  • Since beginning of last month:
    • Site-wide: 17,974 out of 101,433

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!