Rxivist logo

Locations in the Neocortex: A Theory of Sensorimotor Object Recognition Using Cortical Grid Cells

By Marcus Lewis, Scott Purdy, Subutai Ahmad, Jeff Hawkins

Posted 05 Oct 2018
bioRxiv DOI: 10.1101/436352 (published DOI: 10.3389/fncir.2019.00022)

The neocortex is capable of anticipating the sensory results of movement but the neural mechanisms are poorly understood. In the entorhinal cortex, grid cells represent the location of an animal in its environment, and this location is updated through movement and path integration. In this paper, we propose that sensory neocortex incorporates movement using grid cell-like neurons that represent the location of sensors on an object. We describe a two-layer neural network model that uses cortical grid cells and path integration to robustly learn and recognize objects through movement and predict sensory stimuli after movement. A layer of cells consisting of several grid cell-like modules represents a location in the reference frame of a specific object. Another layer of cells which processes sensory input receives this location input as context and uses it to encode the sensory input in the object's reference frame. Sensory input causes the network to invoke previously learned locations that are consistent with the input, and motor input causes the network to update those locations. Simulations show that the model can learn hundreds of objects even when object features alone are insufficient for disambiguation. We discuss the relationship of the model to cortical circuitry and suggest that the reciprocal connections between layers 4 and 6 fit the requirements of the model. We propose that the subgranular layers of cortical columns employ grid cell-like mechanisms to represent object specific locations that are updated through movement.

Download data

  • Downloaded 2,510 times
  • Download rankings, all-time:
    • Site-wide: 5,397
    • In neuroscience: 504
  • Year to date:
    • Site-wide: 73,905
  • Since beginning of last month:
    • Site-wide: 53,025

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News