Rxivist logo

Importance: Between-subject variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients. However, such group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. Objective: To compare brain structural variability between individuals with SZ and healthy controls (HC) and to test if respective variability reflects the polygenic risk for SZ (PRS) in HC. Design, Setting, and Participants: We compared MRI derived cortical thickness and subcortical volumes between 2,010 healthy controls and 1,151 patients with SZ across 16 cohorts. Secondly, we tested for associations between PRS and MRI features in 12,490 participants from UK Biobank. Main Outcomes and Measures: We modeled mean and dispersion effects of SZ and PRS using double generalized linear models. We performed vertex-wise analyses for thickness, and region-of-interest analysis for cortical, subcortical and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, controlling for intracranial volume and population covariates, test of robustness of PRS threshold, and outlier removal. Results: Compared to controls, patients with SZ showed higher heterogeneity in cortical thickness, cortical and ventricle volumes, and hippocampal subfields. Higher PRS was associated with thinner frontal and temporal cortices, as well as smaller left CA2/3, but was not significantly associated with dispersion. Conclusion and relevance: SZ is associated with substantial brain structural heterogeneity beyond the mean differences. These findings possibly reflect higher differential sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of SZ. Higher PRS for SZ was associated with thinner fronto-temporal cortices and smaller subcortical volumes, but there were no significant associations with the heterogeneity in these measures, i.e. the variability among individuals with high PRS were comparable to the variability among individuals with low PRS. This suggests that brain variability in SZ results from interactions between environmental and genetic factors that are not captured by the PGR. Factors contributing to heterogeneity in fronto-temporal cortices and hippocampus are thus key to further our understanding of how genetic and environmental factors shape brain biology in SZ.

Download data

  • Downloaded 494 times
  • Download rankings, all-time:
    • Site-wide: 37,031 out of 100,856
    • In neuroscience: 6,325 out of 17,976
  • Year to date:
    • Site-wide: 80,184 out of 100,856
  • Since beginning of last month:
    • Site-wide: 96,604 out of 100,856

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!