Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 70,281 bioRxiv papers from 306,896 authors.

Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding

By Daniel D Le, Tyler C. Shimko, Arjun K Aditham, Allison M Keys, Yaron Orenstein, Polly M. Fordyce

Posted 26 Sep 2017
bioRxiv DOI: 10.1101/193904 (published DOI: 10.1073/pnas.1715888115)

Transcription factors (TFs) are primary regulators of gene expression in cells, where they bind specific genomic target sites to control transcription. Quantitative measurements of TF-DNA binding energies can improve the accuracy of predictions of TF occupancy and downstream gene expression in vivo and further shed light on how transcriptional networks are rewired throughout evolution. Here, we present a novel sequencing-based TF binding assay and analysis pipeline capable of providing quantitative estimates of binding energies for more than one million DNA sequences in parallel at high energetic resolution. Using this platform, we measured the binding energies associated with all possible combinations of 10 nucleotides flanking the known consensus DNA target for two model yeast TFs, Pho4 and Cbf1. A large fraction of these flanking mutations change overall binding energies by an amount equal to or greater than consensus site mutations, suggesting that current definitions of TF binding sites may be too restrictive. By systematically comparing estimates of binding energies output by deep neural networks (NN) and biophysical models trained on these data, we establish that dinucleotide specificities are sufficient to explain essentially all variance in observed binding behavior, with Cbf1 binding exhibiting significantly more epistasis than Pho4. NN-derived binding energies agree with orthogonal biochemical measurements and reveal that dynamically occupied sites in vivo are both energetically and mutationally distant from the highest-affinity sites.

Download data

  • Downloaded 1,029 times
  • Download rankings, all-time:
    • Site-wide: 7,809 out of 70,260
    • In biophysics: 228 out of 2,990
  • Year to date:
    • Site-wide: 58,617 out of 70,260
  • Since beginning of last month:
    • Site-wide: 39,752 out of 70,260

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News