Rxivist logo

Full-length de novo viral quasispecies assembly through variation graph construction

By Jasmijn A Baaijens, Bastiaan Van der Roest, Johannes Köster, Leen Stougie, Alexander Schönhuth

Posted 23 Mar 2018
bioRxiv DOI: 10.1101/287177 (published DOI: 10.1093/bioinformatics/btz443)

Viruses populate their hosts as a viral quasispecies: a collection of genetically related mutant strains. Viral quasispecies assembly is the reconstruction of strain-specific haplotypes from read data, and predicting their relative abundances within the mix of strains is an important step for various treatment-related reasons. Reference-genome-independent (“de novo”) approaches have yielded benefits over reference-guided approaches, because reference-induced biases can become overwhelming when dealing with divergent strains. While being very accurate, extant de novo methods only yield rather short contigs. The remaining challenge is to reconstruct full-length haplotypes together with their abundances from such contigs. We present Virus-VG as a de novo approach to viral haplotype reconstruction from pre-assembled contigs. Our method constructs a variation graph from the short input contigs without making use of a reference genome. Then, to obtain paths through the variation graph that reflect the original haplotypes, we solve a minimization problem that yields a selection of maximal-length paths that is optimal in terms of being compatible with the read coverages computed for the nodes of the variation graph. We output the resulting selection of maximal length paths as the haplotypes, together with their abundances. Benchmarking experiments on challenging simulated and real data sets show significant improvements in assembly contiguity compared to the input contigs, while preserving low error rates compared to the state-of-the-art viral quasispecies assemblers. Virus-VG is freely available at <https://bitbucket.org/jbaaijens/virus-vg>.

Download data

  • Downloaded 1,329 times
  • Download rankings, all-time:
    • Site-wide: 10,735 out of 116,126
    • In bioinformatics: 1,441 out of 9,552
  • Year to date:
    • Site-wide: 32,592 out of 116,126
  • Since beginning of last month:
    • Site-wide: 38,564 out of 116,126

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)