Rxivist logo

Composite measurements and molecular compressed sensing for highly efficient transcriptomics

By Brian Cleary, Le Cong, Eric S Lander, Aviv Regev

Posted 02 Jan 2017
bioRxiv DOI: 10.1101/091926 (published DOI: 10.1016/j.cell.2017.10.023)

RNA profiling is an excellent phenotype of cellular responses and tissue states, but can be costly to generate at the massive scale required for studies of regulatory circuits, genetic states or perturbation screens. Here, we draw on a series of advances over the last decade in the field of mathematics to establish a rigorous link between biological structure, data compressibility, and efficient data acquisition. We propose that very few random composite measurements - in which gene abundances are combined in a random linear combination - are needed to approximate the high-dimensional similarity between any pair of gene abundance profiles. We then show how finding latent, sparse representations of gene expression data would enable us to 'decompress' a small number of random composite measurements and recover high-dimensional gene expression levels that were not measured (unobserved). We present a new algorithm for finding sparse, modular structure, which improves the ability to interpret samples in terms of small numbers of active modules, and show that the modular structure we find is sufficient to recover gene expression profiles from composite measurements (with ~100-fold fewer composite measurements than genes). Moreover, the knowledge that sparse, modular structures exist allows us to recover expression profiles from composite measurements, even without access to any training data. Finally, we present a proof-of-concept experiment for making composite measurements in the laboratory, involving the measurement of linear combinations of RNA abundances. Altogether, our results suggest new compressive modalities in experimental biology that can form a foundation for massive scaling in high-throughput measurements, while also offering new insights into the interpretation of high-dimensional data. A recorded seminar presentation of this work is available at: https://www.youtube.com/watch?v=2dBZEOXqKHs

Download data

  • Downloaded 3,238 times
  • Download rankings, all-time:
    • Site-wide: 1,815 out of 100,591
    • In systems biology: 41 out of 2,556
  • Year to date:
    • Site-wide: 52,312 out of 100,591
  • Since beginning of last month:
    • Site-wide: None out of 100,591

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News

  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!