Finding analytic stationary solutions to the chemical master equation by gluing state spaces at one or two states recursively
By
X. Flora Meng,
Ania-Ariadna Baetica,
Vipul Singhad,
Richard M. Murray
Posted 03 Mar 2017
bioRxiv DOI: 10.1101/113340
(published DOI: 10.1098/rsif.2017.0157)
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model that describes how the probability distribution of a chemically reacting system varies with time. Knowing analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterise state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing stationary distributions that satisfy user-specified constraints. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and chemical reactions with two-dimensional state spaces.
Download data
- Downloaded 636 times
- Download rankings, all-time:
- Site-wide: 36,641
- In systems biology: 861
- Year to date:
- Site-wide: 72,315
- Since beginning of last month:
- Site-wide: 72,315
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!