Fast and flexible simulation and parameter estimation for synthetic biology using bioscrape
By
Anandh Swaminathan,
William Poole,
Victoria Hsiao,
Richard M. Murray
Posted 27 Mar 2017
bioRxiv DOI: 10.1101/121152
In systems and synthetic biology, it is common to build chemical reaction network (CRN) models of biochemical circuits and networks. Although automation and other high-throughput techniques have led to an abundance of data enabling data-driven quantitative modeling and parameter estimation, the intense amount of simulation needed for these methods still frequently results in a computational bottleneck. Here we present bioscrape (Bio-circuit Stochastic Single-cell Reaction Analysis and Parameter Estimation) - a Python package for fast and flexible modeling and simulation of highly customizable chemical reaction networks. Specifically, bioscrape supports deterministic and stochastic simulations, which can incorporate delay, cell growth, and cell division. All functionalities - reaction models, simulation algorithms, cell growth models, and partioning models - are implemented as interfaces in an easily extensible and modular object-oriented framework. Models can be constructed via Systems Biology Markup Language (SBML), a simple internal XML language, or specified programmatically via a Python API. Simulation run times obtained with the package are comparable to those obtained using C code - this is particularly advantageous for computationally expensive applications such as Bayesian inference or simulation of cell lineages. We first show the package's simulation capabilities on a variety of example simulations of stochastic gene expression. We then further demonstrate the package by using it to do parameter inference on a model of integrase enzyme-mediated DNA recombination dynamics with experimental data. The bioscrape package is publicly available online (https://github.com/ananswam/bioscrape) along with more detailed documentation and examples.
Download data
- Downloaded 1,246 times
- Download rankings, all-time:
- Site-wide: 13,986
- In synthetic biology: 171
- Year to date:
- Site-wide: 24,683
- Since beginning of last month:
- Site-wide: 24,683
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!