Role of interaction network topology in controlling microbial population in consortia
By
Xinying Ren,
Richard M. Murray
Posted 24 Mar 2018
bioRxiv DOI: 10.1101/288142
Engineering microbial consortia is an important new frontier for synthetic biology given its efficiency in performing complex tasks and endurance to environmental uncertainty. Most synthetic circuits regulate population level behaviors via cell-to-cell communications, which are affected by spatially heterogeneous environments. Therefore, it is important to understand the limits on controlling system dynamics that are determined by interconnections among cell agents and provide a control strategy for engineering consortia. Here, we build a network model for a fractional population control circuit in two-strain consortia, and characterize the cell-to-cell communication network by topological properties, such as symmetry, locality and connectivity. Using linear network control theory, we relate the network topology to system output tracking performance. We analytically and numerically demonstrate that the minimum network control energy for accurate tracking depends on locality difference between two cell populations and how strongly the controller node contributes to communication strength. To realize robust consortia, we can manipulate the communication network topology and construct strongly connected consortia by altering chemicals in environments. Our results ground the expected cell population dynamics in its spatially organized communication network, and inspire directions in cooperative control in microbial consortia.
Download data
- Downloaded 744 times
- Download rankings, all-time:
- Site-wide: 29,618
- In synthetic biology: 382
- Year to date:
- Site-wide: 107,276
- Since beginning of last month:
- Site-wide: 107,276
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!