Rxivist logo

A cautionary tale on using tumour growth rate to predict survival

By Hitesh B. Mistry

Posted 20 Feb 2017
bioRxiv DOI: 10.1101/109934

A recurrent question within oncology drug development is predicting phase III outcome for a new treatment using early clinical data. One approach to tackle this problem has been to derive metrics from mathematical models that describe tumour size dynamics termed re-growth rate and time to tumour re-growth. They have shown to be strong predictors of overall survival in numerous studies but there is debate about how these metrics are derived and if they are more predictive than empirical end-points. This work explores the issues raised in using model-derived metric as predictors for survival analyses. Re-growth rate and time to tumour re-growth were calculated for three large clinical studies by forward and reverse alignment. The latter involves re-aligning patients to their time of progression. Hence it accounts for the time taken to estimate re-growth rate and time to tumour re-growth but also assesses if these predictors correlate to survival from the time of progression. We found that neither re-growth rate nor time to tumour re-growth correlated to survival using reverse alignment. This suggests that the dynamics of tumours up until disease progression has no relationship to survival post progression. For prediction of a phase III trial we found the metrics performed no better than empirical end-points. These results highlight that care must be taken when relating dynamics of tumour imaging to survival and that bench-marking new approaches to existing ones is essential.

Download data

  • Downloaded 640 times
  • Download rankings, all-time:
    • Site-wide: 38,759
    • In cancer biology: 1,049
  • Year to date:
    • Site-wide: 119,797
  • Since beginning of last month:
    • Site-wide: 124,243

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)