Rxivist logo

crisprQTL mapping as a genome-wide association framework for cellular genetic screens

By Molly Gasperini, Andrew J. Hill, José L. McFaline-Figueroa, Beth Martin, Cole Trapnell, Nadav Ahituv, Jay Shendure

Posted 04 May 2018
bioRxiv DOI: 10.1101/314344

Expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS) are powerful paradigms for mapping the determinants of gene expression and organismal phenotypes, respectively. However, eQTL mapping and GWAS are limited in scope (to naturally occurring, common genetic variants) and resolution (by linkage disequilibrium). Here, we present crisprQTL mapping, a framework in which large numbers of CRISPR/Cas9 perturbations are introduced to each cell on an isogenic background, followed by single-cell RNA-seq (scRNA-seq). crisprQTL mapping is analogous to conventional human eQTL studies, but with individual humans replaced by individual cells; genetic variants replaced by unique combinations of unlinked guide RNA (gRNA)-programmed perturbations per cell; and tissue-level RNA-seq of many individuals replaced by scRNA-seq of many cells. By randomly introducing gRNAs, a single population of cells can be leveraged to test for association between each perturbation and the expression of any potential target gene, analogous to how eQTL studies leverage populations of humans to test millions of genetic variants for associations with expression in a genome-wide manner. However, crisprQTL mapping is neither limited to naturally occurring, common genetic variants nor by linkage disequilibrium. As a proof-of-concept, we applied crisprQTL mapping to evaluate 1,119 candidate enhancers with no strong a priori hypothesis as to their target gene(s). Perturbations were made by a nuclease-dead Cas9 tethered to KRAB, and introduced at a mean "allele frequency" of 1.1% into a population of 47,650 profiled human K562 cells (median of 15 gRNAs identified per cell). We tested for differential expression of all genes within 1 megabase of each candidate enhancer, effectively evaluating 17,584 potential enhancer-target gene relationships within a single experiment. At an empirical false discovery rate of 10%, we identify 128 cis crisprQTLs (11%) whose targeting resulted in downregulation of 105 nearby genes. crisprQTLs were strongly enriched for proximity to their target genes (median 34.3 kilobases) and the strength of H3K27ac, p300, and lineage-specific transcription factor ChIP-seq peaks. Our results establish the power of the eQTL mapping paradigm as applied to programmed variation in populations of cells, rather than natural variation in populations of individuals. We anticipate that crisprQTL mapping will facilitate the comprehensive elucidation of the cis-regulatory architecture of the human genome.

Download data

  • Downloaded 3,971 times
  • Download rankings, all-time:
    • Site-wide: 1,132 out of 89,005
    • In genomics: 238 out of 5,673
  • Year to date:
    • Site-wide: 18,606 out of 89,005
  • Since beginning of last month:
    • Site-wide: 14,445 out of 89,005

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)