Schizophrenia hiPSC neurons display expression changes that are enriched for disease risk variants and a blunted activity-dependent response
By
Panos Roussos,
Boris Guennewig,
Dominik C. Kaczorowski,
Guy Barry,
Kristen J. Brennand
Posted 08 Jul 2016
bioRxiv DOI: 10.1101/062885
IMPORTANCE: Schizophrenia (SCZ) is a common illness with complex genetic architecture where both common genetic variation and rare mutations have been implicated. SCZ candidate genes participate in common molecular pathways that are regulated by activity-dependent changes in neurons, including the signaling network that modulates synaptic strength and the network of genes that are targets of fragile X mental retardation protein. One important next step is to further our understanding on the role of activity-dependent changes of genes expression in the etiopathogenesis of SCZ. OBJECTIVE: To examine whether neuronal activity-dependent changes of gene expression is dysregulated in SCZ. DESIGN, SETTING, AND PARTICIPANTS: Neurons differentiated from human induced pluripotent stem cells (hiPSCs) derived from 4 cases with SCZ and 4 unaffected controls were depolarized using potassium chloride. RNA was extracted followed by genome-wide profiling of the transcriptome. MAIN OUTCOMES AND MEASURES: We performed differential expression analysis and gene co-expression analysis to identify activity-dependent or disease-specific changes of the transcriptome. Further, we used gene set analyses to identify co-expressed modules that are enriched for SCZ risk genes. RESULTS: We identified 1,669 genes that are significantly different in SCZ-associated vs. control hiPSC-derived neurons and 1,199 genes that are altered in these cells in response to depolarization. We show that the effect of activity-dependent changes of gene expression in SCZ-associated neurons is attenuated compared to controls. Furthermore, these differentially expressed genes are co-expressed in modules that are highly enriched for genes affected by genetic risk variants in SCZ and other neurodevelopmental disorders. CONCLUSIONS AND RELEVANCE: Our results show that SCZ candidate genes converge to gene networks that are associated with a blunted effect of activity-dependent changes of gene expression in SCZ-associated neurons. Overall, these findings show that hiPSC neurons demonstrate activity-dependent transcriptional changes that can be utilized to examine underlying mechanisms and therapeutic interventions related to SCZ.
Download data
- Downloaded 422 times
- Download rankings, all-time:
- Site-wide: 59,854
- In neuroscience: 9,090
- Year to date:
- Site-wide: 88,010
- Since beginning of last month:
- Site-wide: 90,887
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!