End-to-end deep image reconstruction from human brain activity
By
Guohua Shen,
Kshitij Dwivedi,
Kei Majima,
Tomoyasu Horikawa,
Yukiyasu Kamitani
Posted 27 Feb 2018
bioRxiv DOI: 10.1101/272518
(published DOI: 10.3389/fncom.2019.00021)
Deep neural networks (DNNs) have recently been applied successfully to brain decoding and image reconstruction from functional magnetic resonance imaging (fMRI) activity. However, direct training of a DNN with fMRI data is often avoided because the size of available data is thought to be insufficient to train a complex network with numerous parameters. Instead, a pre-trained DNN has served as a proxy for hierarchical visual representations, and fMRI data were used to decode individual DNN features of a stimulus image using a simple linear model, which were then passed to a reconstruction module. Here, we present our attempt to directly train a DNN model with fMRI data and the corresponding stimulus images to build an end-to-end reconstruction model. We trained a generative adversarial network with an additional loss term defined in a high-level feature space (feature loss) using up to 6,000 training data points (natural images and the fMRI responses). The trained deep generator network was tested on an independent dataset, directly producing a reconstructed image given an fMRI pattern as the input. The reconstructions obtained from the proposed method showed resemblance with both natural and artificial test stimuli. The accuracy increased as a function of the training data size, though not outperforming the decoded feature-based method with the available data size. Ablation analyses indicated that the feature loss played a critical role to achieve accurate reconstruction. Our results suggest a potential for the end-to-end framework to learn a direct mapping between brain activity and perception given even larger datasets.
Download data
- Downloaded 5,897 times
- Download rankings, all-time:
- Site-wide: 1,472
- In neuroscience: 74
- Year to date:
- Site-wide: 34,231
- Since beginning of last month:
- Site-wide: 34,231
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!