Rxivist logo

Superoanterior Fasciculus (SAF): Novel fiber tract revealed by diffusion MRI fiber tractography

By Szabolcs David, Anneriet M. Heemskerk, Francesco Corrivetti, Michel Thiebaut de Schotten, Silvio Sarubbo, Laurent Petit, Max A. Viergever, Derek K. Jones, Emmanuel Mandonnet, Hubertus Axer, John Evans, Tomáš Paus, Alexander Leemans

Posted 11 May 2018
bioRxiv DOI: 10.1101/319863 (published DOI: 10.3389/fnana.2019.00024)

Substantial progress in acquisition, processing, and analysis boosted the reliability of diffusion-weighted MRI and increased the accuracy of mapping white matter pathways with fiber tractography. Since the introduction of 'region of interest' (ROI) based virtual dissection by Conturo et al. in 1999, researchers have used tractography to identify white matter pathways, which faithfully represented previously known structures revealed by dyeing studies or post-mortem descriptions. The reconstructed streamlines are subjects of bundle-specific in vivo investigations to show differences between groups (e.g., comparing fractional anisotropy (FA) between patients and healthy controls) or to describe the relation between diffusion scalars and metrics of interest (e.g.: normal aging or changes due to learning). By applying a reverse strategy in using diffusion-weighted MRI tractography first, then supporting the findings with other techniques, we have identified a bilateral tract in the frontal cortex - the superoanterior fasciculus (SAF). The tract resembles the anterior shape of the cingulum bundle, but is located more frontally. To erase the chance that our findings are confounded by acquisition, processing or modeling artifacts, we analyzed a total of 421 subjects from four cohorts with different acquisition schemes and diverse processing pipelines. The findings were also completed with other non-MRI techniques, such as polarized light microscopy and dissection. Tractography results demonstrate a long pathway and are consistent among cohorts, while dissection indicates a series of U-shaped fibers connecting adjacent gyri. In conclusion, we hypothesize that these consecutive U-shaped fibers emerge to form a pathway, thereby resulting in a multicomponent bundle.

Download data

  • Downloaded 470 times
  • Download rankings, all-time:
    • Site-wide: 39,344 out of 100,904
    • In neuroscience: 6,751 out of 17,983
  • Year to date:
    • Site-wide: 80,466 out of 100,904
  • Since beginning of last month:
    • Site-wide: 73,227 out of 100,904

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)


  • 20 Oct 2020: Support for sorting preprints using Twitter activity has been removed, at least temporarily, until a new source of social media activity data becomes available.
  • 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
  • 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
  • 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
  • 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
  • 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
  • 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
  • 22 Jan 2019: Nature just published an article about Rxivist and our data.
  • 13 Jan 2019: The Rxivist preprint is live!