Rxivist logo

A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits

By Jonathan T Ting, Brian E Kalmbach, Peter Chong, Rebecca de Frates, C. Dirk Keene, Ryder P Gwinn, Charles Cobbs, Andrew L. Ko, Jeffrey G Ojemann, Richard G Ellenbogen, Christof Koch, Ed Lein

Posted 18 May 2018
bioRxiv DOI: 10.1101/325589 (published DOI: 10.1038/s41598-018-26803-9)

The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation. Surprisingly, acute human brain slices exhibited exceptional viability, and neuronal intrinsic membrane properties could be assayed for at least three days. Maintaining adult human slices in culture under sterile conditions further enabled the application of viral tools to drive rapid expression of exogenous transgenes. Widespread neuron-specific labeling was achieved as early as two days post infection with HSV-1 vectors, with virally-transduced neurons exhibiting membrane properties largely comparable to uninfected neurons over this short timeframe. Finally, we demonstrate the suitability of this culture paradigm for optical manipulation and monitoring of neuronal activity using genetically encoded probes, opening a path for applying modern molecular-genetic tools to study human brain circuit function.

Download data

  • Downloaded 574 times
  • Download rankings, all-time:
    • Site-wide: 44,506
    • In neuroscience: 6,429
  • Year to date:
    • Site-wide: 41,021
  • Since beginning of last month:
    • Site-wide: 60,134

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide


Sign up for the Rxivist weekly newsletter! (Click here for more details.)