Rxivist logo

Rxivist combines preprints from bioRxiv with data from Twitter to help you find the papers being discussed in your field. Currently indexing 70,077 bioRxiv papers from 306,093 authors.

Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry

By Geneviève Richard, Knut Kolskår, Anne-Marthe Sanders, Tobias Kaufmann, Anders Petersen, Nhat Trung Doan, Jennifer Monereo Sánchez, Dag Alnæs, Kristine M. Ulrichsen, Erlend S. Dørum, Ole A. Andreassen, Jan Egil Nordvik, Lars T. Westlye

Posted 02 May 2018
bioRxiv DOI: 10.1101/313015 (published DOI: 10.7717/peerj.5908)

Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have to a lesser extent been characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18-87 years. To compare the tissue-specific brain ages and their cognitive sensitivity we applied each of the 11 models in an independent and cognitively well-characterized sample (n=265, 20-88 years). Correlations between true and estimated age in our test sample were highest for the most comprehensive brain morphometry (r=0.83, CI:0.78-0.86) and white matter microstructure (r=0.79, CI:0.74-0.83) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders.

Download data

  • Downloaded 284 times
  • Download rankings, all-time:
    • Site-wide: 40,150 out of 70,077
    • In neuroscience: 7,029 out of 12,597
  • Year to date:
    • Site-wide: 19,353 out of 70,077
  • Since beginning of last month:
    • Site-wide: 46,788 out of 70,077

Altmetric data


Downloads over time

Distribution of downloads per paper, site-wide


PanLingua

Sign up for the Rxivist weekly newsletter! (Click here for more details.)


News