Detecting sleep in free-living conditions without sleep-diaries: a device-agnostic, wearable heart rate sensing approach
By
Ignacio Perez-Pozuelo,
Marius Posa,
Dimitris Spathis,
Kate Westgate,
Nicholas J. Wareham,
Cecilia Mascolo,
Soren Brage,
Joao Palotti
Posted 08 Sep 2020
medRxiv DOI: 10.1101/2020.09.05.20188367
Study Objectives: The rise of multisensor wearable devices offers a unique opportunity for the objective inference of sleep outside laboratories, enabling longitudinal monitoring in large populations. To enhance objectivity and facilitate cross-cohort comparisons, sleep detection algorithms in free-living conditions should rely on personalized but device-agnostic features, which can be applied without laborious human annotations or sleep diaries. We developed and validated a heart rate-based algorithm that captures inter- and intra-individual sleep differences, does not require human input and can be applied in free-living conditions. Methods: The algorithm was evaluated across four study cohorts using different research- and consumer-grade devices for over 2,000 nights. Recording periods included both 24-hour free-living and conventional lab-based night-only data. Our method was systematically optimized and validated against polysomnography and sleep diaries and compared to sleep periods produced by accelerometry-based angular change algorithms. Results: We evaluated our approach in four cohorts comprising two free-living studies with detailed sleep diaries and two PSG studies. In the free-living studies, the algorithm yielded a mean squared error (MSE) of 0.06 to 0.07 and a total sleep time deviation of -0.60 to -14.08 minutes. In the laboratory studies, the MSE ranged between 0.06 and 0.10 yielding a time deviation between -23.23 and -33.15 minutes. Conclusions: Our results suggest that our heart rate-based algorithm can reliably and objectively infer sleep under longitudinal, free-living conditions, independent of the wearable device used. This represents the first open-source algorithm to leverage heart rate data for inferring sleep without requiring sleep diaries or annotations.
Download data
- Downloaded 309 times
- Download rankings, all-time:
- Site-wide: 78,361
- In health informatics: 256
- Year to date:
- Site-wide: 19,650
- Since beginning of last month:
- Site-wide: 19,650
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!