Gene prioritization based on systems biology revealed new insight into genetic basis and pathophysiology underlying schizophrenia
By
Jia-feng Li,
Lei Wang,
Xiao Dang,
Wei-Min Feng,
Yu-Ting Ma,
Si-Jie He,
Liang Liang,
Huan-Ming Yang,
Han-Kui Liu,
Jian-Guo Zhang
Posted 29 Jun 2020
medRxiv DOI: 10.1101/2020.06.26.20140541
Sequencing-based studies have recognized hundreds of genetic variants that increase the risk of schizophrenia (SCZ), but only a few percents of heritability can be attributed to these loci. It is challenging to discover the full spectrum of schizophrenia genes and reveal the dysregulated functions underlying the disease. Here, we proposed a holistic model for predicting disease genes (HMPDG), a novel machine learning prediction strategy integrated by Protein-Protein Interaction Network (PPIN), pathogenicity score, and RNA expression data. Applying HMPDG, 1946 potential risk genes (PRGs) as a complement of the genetic basis of SCZ were predicted. Among these, the first decile genes were highlighted as high confidence genes (HCGs). PRGs were validated by multiple independent studies of schizophrenia, including genome-wide association studies (GWASs), gene expression studies, and epigenetic studies. Remarkably, the strategy revealed causal genes of schizophrenia in GWAS loci and regions of copy number variant (CNV), providing a new insight to identify key genes in disease-related loci with multi genes. Leveraging our predictions, we depict the spatiotemporal expression pattern and functional groups of schizophrenia risk genes, which can help us figure out the pathophysiology of schizophrenia and facilitate the discovery of biomarkers. Taken together, our strategy will advance the understanding of schizophrenia genetic basis and the development of diagnosis and therapeutics.
Download data
- Downloaded 237 times
- Download rankings, all-time:
- Site-wide: 93,387
- In psychiatry and clinical psychology: 331
- Year to date:
- Site-wide: 38,585
- Since beginning of last month:
- Site-wide: 38,585
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!