Rxivist logo

Novel bioinformatics approach to investigate quantitative phenotype-genotype associations in neuroimaging studies

By Sejal Patel, Min Tae M. Park, The Alzheimer’s Disease Neuroimaging Initiative, Mallar Chakravarty, Jo Knight

Posted 10 Feb 2015
bioRxiv DOI: 10.1101/015065

Imaging genetics is an emerging field in which the association between genes and neuroimaging-based quantitative phenotypes are used to explore the functional role of genes in neuroanatomy and neurophysiology in the context of healthy function and neuropsychiatric disorders. The main obstacle for researchers in the field is the high dimensionality of the data in both the imaging phenotypes and the genetic variants commonly typed. In this article, we develop a novel method that utilizes Gene Ontology, an online database, to select and prioritize certain genes, employing a stratified false discovery rate (sFDR) approach to investigate their associations with imaging phenotypes. sFDR has the potential to increase power in genome wide association studies (GWAS), and is quickly gaining traction as a method for multiple testing correction. Our novel approach addresses both the pressing need in genetic research to move beyond candidate gene studies, while not being overburdened with a loss of power due to multiple testing. As an example of our methodology, we perform a GWAS of hippocampal volume using the Alzheimer's Disease Neuroimaging Initiative sample.

Download data

  • Downloaded 702 times
  • Download rankings, all-time:
    • Site-wide: 56,958
    • In genetics: 2,188
  • Year to date:
    • Site-wide: 163,867
  • Since beginning of last month:
    • Site-wide: 116,708

Altmetric data

Downloads over time

Distribution of downloads per paper, site-wide