Centromere Detection of Human Metaphase Chromosome Images using a Candidate Based Method
By
Akila Subasinghe,
Jagath Samarabandu,
Yanxin Li,
Ruth Wilkins,
Farrah Flegal,
Joan H. Knoll,
Peter K Rogan
Posted 18 Nov 2015
bioRxiv DOI: 10.1101/032110
(published DOI: 10.12688/f1000research.9075.1)
Accurate detection of the human metaphase chromosome centromere is an critical element of cytogenetic diagnostic techniques, including chromosome enumeration, karyotyping and radiation biodosimetry. Existing image processing methods can perform poorly in the presence of irregular boundaries, shape variations and premature sister chromatid separation, which can adversely affect centromere localization. We present a centromere detection algorithm that uses a novel profile thickness measurement technique on irregular chromosome structures defined by contour partitioning. Our algorithm generates a set of centromere candidates which are then evaluated based on a set of features derived from images of chromosomes. Our method also partitions the chromosome contour to isolate its telomere regions and then detects and corrects for sister chromatid separation. When tested with a chromosome database consisting of 1400 chromosomes collected from 40 metaphase cell images, the candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%. We also introduce a Candidate Based Centromere Confidence (CBCC) metric which indicates an approximate confidence value of a given centromere detection and can be readily extended into other candidate related detection problems.
Download data
- Downloaded 859 times
- Download rankings, all-time:
- Site-wide: 24,601
- In genetics: 1,218
- Year to date:
- Site-wide: 53,134
- Since beginning of last month:
- Site-wide: 55,488
Altmetric data
Downloads over time
Distribution of downloads per paper, site-wide
PanLingua
News
- 27 Nov 2020: The website and API now include results pulled from medRxiv as well as bioRxiv.
- 18 Dec 2019: We're pleased to announce PanLingua, a new tool that enables you to search for machine-translated bioRxiv preprints using more than 100 different languages.
- 21 May 2019: PLOS Biology has published a community page about Rxivist.org and its design.
- 10 May 2019: The paper analyzing the Rxivist dataset has been published at eLife.
- 1 Mar 2019: We now have summary statistics about bioRxiv downloads and submissions.
- 8 Feb 2019: Data from Altmetric is now available on the Rxivist details page for every preprint. Look for the "donut" under the download metrics.
- 30 Jan 2019: preLights has featured the Rxivist preprint and written about our findings.
- 22 Jan 2019: Nature just published an article about Rxivist and our data.
- 13 Jan 2019: The Rxivist preprint is live!